OMRON

G8PM Relay

High Power PCB Relay for Automotive and DC 12 V Applications

High Load Relay for Motor/Resistive Control Applications

- Can replace Mini/Power ISO Plug-in type relay
- Small size & High heat resistance enable for usage in engine room
- Can support 60A Fuse
- PIP reflow compliant
- Temperature range -40°C to +125°C

RoHS Compliant

Model Number Legend

G8PM-DDDD

12345

- 1. Number of Contact Poles
- 1: 1-pole
- 2. Contact Form
- A: SPST (1 Form A)
- 3. Contact structure
- W: Double contact
- 4. Protective structure
- 7: Flux tight (Open vent hole) (RT II IEC61810)
- 5. Special function R: Pin in paste compliant type

- Application Examples
- DC 12V motor/resistive application control
- Automotive DC applications (Smart Junction Box, Main power, Radiator fan, EPS, DC/DC converter, Head lamp, etc.)

Ordering Information

Classification	Contact form	Protective structure	Rated coil voltage (V)	Model	Minimum Packing unit (Tube packing)	
High power	SPST 1 Form A double contact	Flux tight (open vent hole) (RT II IEC61810)	DC12	G8PM-1AW7R	1200 pcs. / box (40 pcs. x 30 tubes)	

Ratings

Coil

Rated voltage	Rated current	Coil resistance	Must-operate voltage	Must-release voltage	Permissible voltage Range	Rated Power consumption	Model
(V)	(mA)	(Ω)	(V)	(V)	(V)	(mW)	
DC12	53.3	225	7.2 Max.	0.8 Min.	10 to 16	640	G8PM-1AW7R

Note 1. The rated current and coil resistance are measured at a coil temperature of 20°C with a tolerance of ±10%.

Note 2. The operating characteristics are measured at a coil temperature of 20°C.

Note 3. The Permissible voltage is the maximum voltage that can be applied to the relay coil.

Contacts

	High power				
Item	G8PM-1AW7R				
Contact Type	Double				
Contact material	Ag-alloy (Cd-free)				
Rated continuous carry current	20°C	60 A			
hated continuous carry current	125°C	40 A			
Max. switching current	150 A Inrush 80 A break *1				
Max. carrying current *2	135% fuse rating	81 A at 14 VDC for 1 h			
	200% fuse rating	120 A at 14 VDC for 2 mins			
Min. switching current	12 VDC 0.1 A				

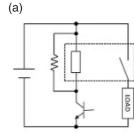
*1. Break current is 14 VDC resistive load 100 cycles at room temperature.

*2. The data is measured at room temperature.

Characteristics

Item			G8PM-1AW					
Contact resistance (See *1.)			Typ.2.5 mΩ Max. 50 mΩ					
Operate time			10 ms max. (12 VDC not including bounce time)					
Release time			5 ms max. (12 VDC not including bounce time)					
Insulation resistance	Between coil and cor	ntacts	100 MΩ min.					
(See *2.)	Between contacts of the same polarity		100 MΩ min.					
Dialastria strangth	Between coil and contacts		500 VAC 1 min					
Dielectric strength	Between contacts of the same polarity		500 VAC 1 min					
Vibration resistance	Destruction		33 Hz, 45 m/s ²					
VIDIALION TESISLATICE	Malfunction		10 to 500 Hz, 45 m/s ² (detection time 10 μs min)					
Shock resistance	Destruction		1,000 m/s ² (pulse duration: 6 ms)					
SHOCK resistance	Malfunction		100 m/s ² (pulse duration: 11 ms detection time: 10 μ s)					
Mechanical enduranc	e (See *3.)		1,000,000 ops. min.					
Resistive Load		Resistive Load	45 A, 14 VDC, 100,000 operations (1 s On/1 s Off)					
Electrical endurance	See 4.)	Lamp Load	100 A Inrush/ 20 A break, 14 VDC,100,000 operations (1 s On/9 s Off)					
Ambient operating temperature			-40 to 125°C (without freezing or condensation)					
Ambient operating humidity			35% to 85% RH					
Weight			Approx. 7.6 g					

Note. The above values are initial values at an ambient temperature of 23°C unless otherwise specified. *1. The contact resistance was measured with 10 A at 12 VDC using the voltage drop method.

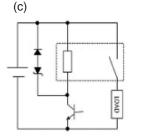

*1. *2. *3. *4.

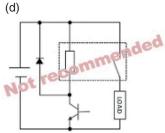
The insulation resistance was measured with a 500 VDC megohimmeter.

The mechanical endurance was measured at a switching frequency of 18,000 operations/hr.

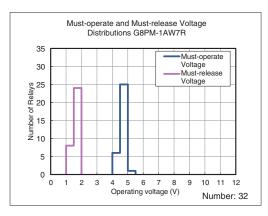
Please connect N.O terminal to the +BATT side and connect surge suppression element in parallel between coil based on recommended circuit.

Recommended circuit: (a), (b), (c) Not-recommended circuit: (d)

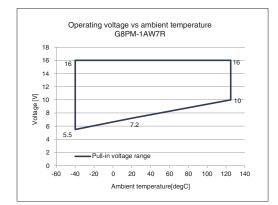



G 8 P M

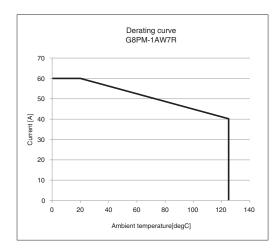
Note: OMRON recommends coil driver circuit (b) and (c) for coil surge suppression. However the circuit (d) is not recommended because it may negatively affect the durability performance.

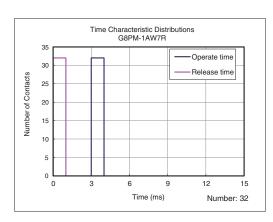

■Reference Technical Data

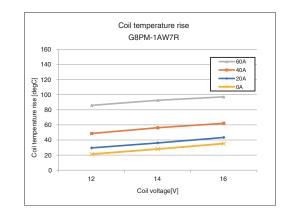
Actual Electrical performance (reference)


Model	Application	Load voltage	Inrush	Steady state	Switching off	Inductance	Ambient temperature	Switching frequency		Required Cycles (min)
		(V)	(A)	(A)	(A)	(mH)	(°C)	On (s)	Off (s)	Total
G8PM-1AW7R	Radiator Fan	13.5	80	30	30		-40 to 110	3.0	8.0	156,000
G8PM-1AW7R	Lamp	14	100	20	20	-	-40 to 110	0.5	5.5	156,000
G8PM-1AW7R	Resistive	14	50	10	10	-	25	2.0	5.0	1,000,000
G8PM-1AW7R	Fuel pump	14.7								
G8PM-1AW7R	Starter Motor	14.5	150	50	50	0.16	-40 to 110	3.0	9.0	156,000

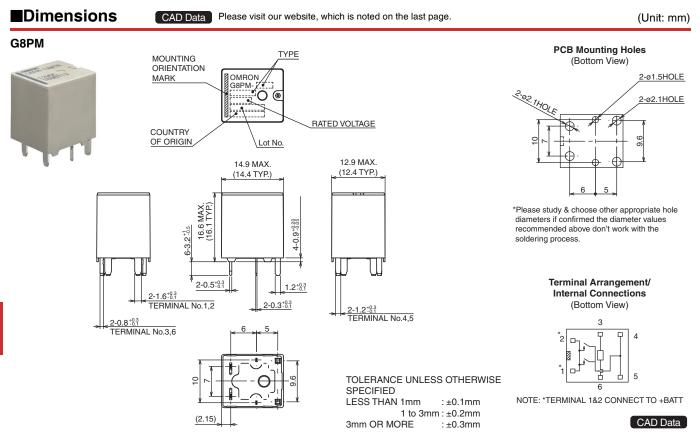
•Must-operate Voltage and Must-release Voltage Distributions


(Number of Relays × Percentage of Rated Voltage)


Operating voltage vs ambient temperature (Cold start)


Derating curve

•Time Characteristic Distributions (Number of Contacts × Time (ms))



•Coil temperature rise [degC]

G8PM

High Power PCB Relay for Automotive and DC 12 V Applications

